КВАЗИКЛАССИЧЕСКАЯ АСИМПТОТИКА СПЕКТРА ОПЕРАТОРА ХАРТРИ ВБЛИЗИ ВЕРХНИХ ГРАНИЦ СПЕКТРАЛЬНЫХ КЛАСТЕРОВ. АСИМПТОТИЧЕСКИЕ РЕШЕНИЯ, СОСРЕДОТОЧЕННЫЕ ВБЛИЗИ ОКРУЖНОСТИ

А.В. Перескоков

НИУ МЭИ, МИЭМ НИУ ВШЭ

pereskokov62@mail.ru

Поступила 05.08.2014

Рассматривается задача на собственные значения для оператора Хартри с кулоновским взаимодействием, который содержит малый параметр перед нелинейностью. Найдены асимптотические собственные значения и асимптотические собственные функции вблизи верхних границ спектральных кластеров. Вблизи окружности, где сосредоточено решение, главный член разложения является решением задачи о двумерном осцилляторе. Ключевые слова: самосогласованное поле, двумерный осциллятор, спектральный кластер, асимптотические собственные значения и собственные функции, логарифмическая особенность.

УДК 517.958 + УДК 517.928

1 Введение

Рассмотрим задачу на собственные значения для нелинейного оператора Хартри с кулоновским взаимодействием в $L^2(\mathbb{R}^3)$

$$(-\Delta_q - \frac{1}{|q|} + \varepsilon \int_{\mathbb{R}^3} \frac{|\psi(q')|^2}{|q - q'|} dq') \psi = \lambda \psi, \tag{1}$$

$$\|\psi\|_{L^2(\mathbb{R}^3)} = 1,\tag{2}$$

где Δ_q — оператор Лапласа, $\varepsilon > 0$ — малый параметр.

Уравнение самосогласованного поля во внешнем поле, содержащее интегральную нелинейность типа Хартри, играет фундаментальную роль в квантовой теории и нелинейной оптике. В частности, такие уравнения возникают в теории полярона, который можно рассматривать как простейший пример частицы, взаимодействующей

с квантовым полем [1,2], в теории конденсата Бозе—Эйнштейна [3], при нахождении электронных орбиталей в многоэлектронных атомах [4], а также при рассмотрении сред с пространственной дисперсией [5].

Хорошо известно [6], что при $\varepsilon = 0$ собственные значения $\lambda = \lambda_n(\varepsilon)$ задачи (1), (2) равны

$$\lambda_n(0) = -\frac{1}{4n^2}.$$

Здесь $n=1,2,\ldots$ — главное квантовое число. Для задачи (1), (2) имеются теоремы существования, в частности, для нижней точки спектра, отвечающему основному состоянию [7, 8]. В работе [9] при n=2 доказано существование состояний, не обладающих сферической симметрией, а также найдено пять ветвей собственных значений, выходящих из невозмущенной точки спектра.

В данной работе будет рассмотрен случай, когда квантовое число n, задающее невозмущенное собственное значение, велико (для определенности будем считать, что λ имеет порядок ε). Вопрос о существовании состояний, отличных от основного, является исходным при исследовании процессов, связанных с возбуждением электронов в поляронных средах [10]. В настоящее время, помимо чисто теоретического интереса, проблема возбужденных поляронных состояний приобретает интерес в связи с проблемой электронного переноса возбуждений в самых различных конденсированных средах. В частности, проблема электронного переноса на большие расстояния является одной из центральных в молекулярной биологии при описании коллективных возбуждений в молекулярных цепочках и в молекулах ДНК [11].

Пусть p=n-m-1, где m — магнитное квантовое число. В данной работе для каждого $p=0,1,2,\ldots$ будут найдены асимптотические собственные значения

$$\lambda_{n,i}^{(p)}(\varepsilon) = -\frac{1}{4n^2} + \varepsilon \left(\frac{\ln n}{4\pi n^2} + \frac{E_{1,i}^{(p)}}{n^2}\right) + O\left(\frac{\varepsilon \ln n}{n^{5/2}}\right), \quad n \to \infty,$$
 (3)

где $i=0,\ldots,I_p$, которые расположены вблизи верхних границ спектральных кластеров, образующихся вокруг уровней энергии невозмущенного оператора (при $\varepsilon=0$). В частности, при p=0,1,2 числа $E_{1,i}^{(p)}$ представимы в виде

$$E_{1,i}^{(p)} = \frac{1}{4\pi} \left(5\ln 2 + \gamma - \frac{\sigma_i^{(p)}}{128} \right). \tag{4}$$

Здесь $\gamma \approx 0.57$ — постоянная Эйлера. При p=0 существует одно значение

$$\sigma_0^{(0)} = 0, (5)$$

при p=1 — два значения

$$\sigma_0^{(1)} = 80, \quad \sigma_1^{(1)} = 96,$$
 (6)

при p = 2 — шесть значений

$$\sigma_0^{(2)} = 123 + \frac{19}{39}, \ \sigma_1^{(2)} = 142, \ \sigma_2^{(2)} = 144,$$

$$\sigma_3^{(2)} = 145 - \frac{1}{33}, \ \sigma_4^{(2)} = 145 - \frac{1}{81}, \ \sigma_5^{(2)} = 147 + \frac{5}{9}.$$

Соответствующие (3) асимптотические собственные функции локализованы вблизи окружности Γ в \mathbb{R}^3 , на которой кулоновское ядро самодействия в (1) имеет логарифмическую особенность. Поэтому поправка в формуле (3) содержит $\ln n$, а числа $\lambda_{n,i}^{(p)}(\varepsilon)$ расположены вблизи верхних границ кластеров. Отметим, что на нижней границе кластера

$$\lambda_n(\varepsilon) \sim -\frac{1}{4n^2} + \frac{\varepsilon E_{min}}{n^2}, \quad n \to \infty,$$

где число E_{min} удовлетворяет неравенству

$$E_{min} \le \frac{1}{2\pi^3} \int_0^{\pi} \int_0^{\pi} K\left(\frac{\sqrt{\sin\theta\sin\theta'}}{\sin((\theta+\theta')/2)}\right) \frac{d\theta'd\theta}{\sin((\theta+\theta')/2)}.$$

Здесь $K(\kappa)$ — полный эллиптический интеграл 1 рода [12].

Асимптотическим решениям уравнений типа Хартри, локализованным вблизи маломерных инвариантных подмногообразий в фазовом пространстве, посвящено большое число работ (см., например, [13–19]). В данной работе главный член асимптотического разложения вблизи окружности, где локализовано решение, оказывается решением другой классической задачи квантовой механики — задачи о двумерном осцилляторе:

$$\mathbf{L}g_{0,i}^{(p)}(\tau,s) = 0, \quad \|g_{0,i}^{(p)}\|_{L^2(\mathbb{R}^2)} = 1. \tag{7}$$

Здесь оператор

$$\mathbf{L} = -\frac{\partial^2}{\partial s^2} - \frac{\partial^2}{\partial \tau^2} + [s^2 + \tau^2 - 2(p+1)]. \tag{8}$$

В результате, функция $g_{0,i}^{(p)}$ представима в виде линейной комбинации базисных собственных функций задачи (7), отвечающих собственному значению p+1. Коэффициенты этого разложения находятся из системы нелинейных уравнений одновременно с нахождением чисел $E_{1,i}^{(p)}$. Отметим, что данная система выводится из условий разрешимости уравнений для следующих приближений.

Аналогичная (1), (2) задача на собственные значения в $L^2(\mathbb{R}^2)$ для возмущенного двумерного резонансного осциллятора, возбуждающий потенциал которого задается интегральной нелинейностью типа Хартри с гладким потенциалом самодействия, рассматривалась ранее в [20,21]. Она имеет вид

$$(\mathbf{H}_0 + \hbar^2 \int_{\mathbb{R}^2} W(|q - q'|^2) | \psi(q') |^2 dq' \psi = \lambda \psi,$$
$$\|\psi\|_{L^2(\mathbb{R}^2)} = 1,$$

где

$$\mathbf{H}_0 = -\frac{\hbar^2}{2} \left(\frac{\partial^2}{\partial q_1^2} + \frac{\partial^2}{\partial q_2^2} \right) + \frac{q_1^2 + q_2^2}{2}$$

— двумерный осциллятор, $\hbar > 0$ — малый параметр, $W(x) = w_0 + w_1 x + w_2 x^2$ — произвольный многочлен 2 степени с вещественными коэффициентами, причем $w_2 > 0$. В работах [20,21] были найдены асимптотические собственные значения и асимптотические собственные функции вблизи верхних границ спектральных кластеров,

которые образуются вокруг собственных значений $\hbar(\ell+1)$ невозмущенного оператора \mathbf{H}_0 . Если ℓ имеет порядок \hbar^{-1} , то асимптотические собственные значения имеют вид

$$\lambda = \lambda_{k,\ell} = \ell\hbar + \hbar + (w_0 + 2\ell\hbar w_1 + 9\ell^2\hbar^2 w_2)\hbar^2 + (2w_1 + 2\ell\hbar w_2(9 - 2\sqrt{6}(k+1/2)))\hbar^3 + O(\hbar^{7/2}), \quad k = 0, 1, 2, \dots, \quad \hbar \to 0.$$
(9)

Если сравнить эту серию с (3), то она не содержит логарифмических поправок, а расщепление спектра в (9) происходит в следующем приближении.

Метод построения квазиклассических асимптотик в гладком случае основан на алгебраическом усреднении возмущения, последующем переходе на алгебру симметрий и когерентном преобразовании от исходного представления этой алгебры к ее неприводимому представлению в пространстве функций над лагранжевым подмногообразием в симплектическом листе [22]. Кроме того, при построении асимптотики вблизи верхних границ спектральных кластеров используется новое интегральное представление для решения.

План дальнейшего изложения следующий. В разделе 2 найдена асимптотика собственных функций невозмущенной задачи. В разделе 3 построены асимптотические решения спектральной задачи для уравнения Хартри. В разделах 4, 5, 6 приведены примеры решения спектральной задачи на подпространствах \mathcal{H}_p . Они состоят из собственных функций двумерного осциллятора, отвечающих собственному значению p+1. В 4 разделе рассмотрены случаи, когда p=0,1, а в 5 и 6 разделах — случай p=2. Отметим, что в 5 разделе ищутся вещественные, а в 6 разделе — комплексные решения задачи. Наконец, дополнение к статье содержит доказательство теоремы из раздела 2.

2 Асимптотика собственных функций невозмущенной задачи

Пользуясь растяжением $q = x/\varepsilon, \psi = \varepsilon^{3/2}v, \lambda = \varepsilon E$, приведем задачу (1), (2) к стандартному для теории квазиклассических приближений виду

$$\left(-\varepsilon\Delta_x - \frac{1}{|x|} + \varepsilon \int_{\mathbb{R}^3} \frac{|v(x')|^2}{|x - x'|} dx'\right) v(x) = Ev(x), \tag{10}$$

$$||v||_{L^2(\mathbb{R}^3)} = 1. \tag{11}$$

При построении асимптотических решений (10), (11) нам потребуется асимптотика собственных функций невозмущенной задачи

$$\left(-\varepsilon\Delta_x - \frac{1}{|x|}\right)v(x) = Ev(x), \quad ||v||_{L^2(\mathbb{R}^3)} = 1.$$

Дискретным собственным значениям

$$E_n = -\frac{1}{4\varepsilon n^2}, \quad n = 1, 2, \dots,$$

в сферических координатах (r, θ, φ) , где

$$0 < r < \infty$$
, $0 < \theta < \pi$, $0 < \varphi < 2\pi$,

отвечают собственные функции [6]

$$v_{n,k,n_r} = Y_{\ell m}(\theta, \varphi) R_{n\ell}(r). \tag{12}$$

Здесь ℓ, n_r — орбитальное и радиальное квантовые числа, $n = \ell + 1 + n_r, \ k = \ell - m,$

$$Y_{\ell m}(\theta, \varphi) = \sqrt{\frac{(2\ell+1)(\ell-|m|)!}{4\pi(\ell+|m|)!}} P_{\ell}^{|m|}(\cos\theta) e^{im\varphi},$$
 (13)

$$R_{n\ell}(r) = \frac{1}{(2\varepsilon n)^{3/2}} \frac{2}{\sqrt{n(n-\ell-1)!(n+\ell)!}} \left(\frac{r}{\varepsilon n}\right)^{\ell} e^{-r/(2\varepsilon n)} L_{n-\ell-1}^{2\ell+1} \left(\frac{r}{\varepsilon n}\right). \tag{14}$$

Функции (13). (14) содержат присоединенный полином Лежандра

$$P_{\ell}^{m}(x) = \frac{(-1)^{\ell}}{2^{\ell} \ell!} (1 - x^{2})^{m/2} \frac{d^{\ell+m}}{dx^{\ell+m}} (1 - x^{2})^{\ell},$$

а также обобщенный полином Лагерра

$$L_n^s(x) = e^x x^{-s} \frac{d^n}{dx^n} (e^{-x} x^{n+s}).$$

Пусть

$$a = 2\ell^2 \varepsilon. \tag{15}$$

Будем считать, что при $\varepsilon \to 0$ число ℓ имеет порядок $\varepsilon^{-1/2}$. Изучим поведение функций v_{n,k,n_r} вблизи окружности

$$\Gamma_a = \{(r, \theta, \varphi) \mid r = a, \ \theta = \pi/2\}$$

в \mathbb{R}^3 . Введем новые переменные

$$\tau = (\theta - \frac{\pi}{2})\sqrt{\ell}, \quad s = (\frac{r}{a} - 1)\sqrt{\ell}.$$

Справедлива

Теорема 1. При $\ell \to \infty$ и небольших $n_r = 0, 1, 2, \ldots$ и $k = 0, 1, 2, \ldots$ функции v_{n,k,n_r} по той $O(\ell^{-\infty})$ сосредоточены вблизи окружености Γ_a , где при $s^6 + \tau^4 \ll \ell$ справедлива асимптотика

$$v_{n,k,n_r} = \frac{(-1)^p \sqrt{\ell}}{a^{3/2} 2^{(p+1)/2} \pi \sqrt{n_r!} \sqrt{k!}} e^{im\varphi} e^{-(s^2 + \tau^2)/2} H_{n_r}(s) H_k(\tau) \Big[1 + O\left(\frac{|s|^3 + 1}{\sqrt{\ell}} H_{n_r}(s)\right) + O\left(\frac{s^2 + 1}{\sqrt{\ell}} H'_{n_r}(s)\right) + O\left(\frac{\tau^4 + 1}{\ell} H_k(\tau)\right) + O\left(\frac{|\tau|^3 + 1}{\ell} H'_k(\tau)\right) \Big].$$

$$(16)$$

 $3 десь H_n - nолином Эрмита.$

Доказательство теоремы 1 приведено в дополнении к статье.

3 Построение асимптотического решения

Переходя в сферическую систему координат, а также делая подстановку

$$v(x) = \frac{e^{im\varphi}}{\sqrt{2\pi}}g(r,\theta),$$

преобразуем задачу (10), (11) к виду [17]

$$\left\{ -\varepsilon \left[\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \left(\frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{\partial}{\partial \theta} - \frac{m^2}{\sin^2 \theta} \right) \right] - \frac{1}{r} + \right.$$

$$+\varepsilon \int_0^{\pi} \int_0^{\infty} W(r, r', \theta, \theta') |g(r', \theta')|^2 (r')^2 \sin \theta' dr' d\theta' - E \left\} g(r, \theta) = 0, \qquad (17)$$

$$\int_0^{\pi} \int_0^{\infty} |g(r, \theta)|^2 r^2 \sin \theta dr d\theta = 1, \qquad (18)$$

где ядро

$$W(r, r', \theta, \theta') = \frac{2}{\pi \sqrt{r^2 + (r')^2 - 2rr'\cos(\theta + \theta')}} K\left(\frac{2\sqrt{rr'\sin\theta\sin\theta'}}{\sqrt{r^2 + (r')^2 - 2rr'\cos(\theta + \theta')}}\right). \tag{19}$$

Для квантовых чисел ℓ, n, m порядка $\varepsilon^{-1/2}$, и следовательно, небольших n_r, k и $p = n_r + k$ ниже будут построены асимптотические решения задачи (10), (11) по $mod\ O(\ell^{-1})$ локализованные вблизи окружности Γ_a . Асимптотические решения задачи (17), (18) будем искать в виде

$$g = a^{-3/2} \left[\sqrt{\ell} g_0(\tau, s) + g_1(\tau, s) + \frac{g_2(\tau, s)}{\sqrt{\ell}} \right] + O\left(\frac{g_3(\tau, s)}{\ell}\right), \tag{20}$$

$$E = -\frac{1}{2a(1 + (n_r + 1)/\ell)^2} + \frac{E_0 \ln \ell}{\ell^2} + \frac{E_1}{\ell^2} + O\left(\frac{\ln \ell}{\ell^{5/2}}\right).$$
 (21)

Здесь $\ell \to \infty$, функции $g_j(\tau,s), j=0,1,2,3$, экспоненциально убывают при $\tau^2+s^2\to\infty$; E_0,E_1 — некоторые константы. (Для упрощения обозначений индексы i и p у g_0 и E_1 опущены.)

Разложим входящие в (17), (18) функции с помощью формулы Тейлора по степеням τ и s. Поскольку функция $K(\kappa)$ имеет логарифмическую особенность при $\kappa \to 1$ [12]

$$K(\kappa) = \ln(4/\sqrt{1-\kappa^2}) + O((1-\kappa^2))\ln(1-\kappa^2), \tag{22}$$

то непосредственно к W формула Тейлора не применима. Обозначим

$$t = (\tau - \tau')^2 + (s - s')^2.$$

Тогда из (19), (22) вытекает

Лемма 1. При $\ell \to \infty$, $t \ll \ell$ имеет место асимптотика

$$W(r, r', \theta, \theta') = \frac{1}{\pi a} \ln \frac{8\sqrt{\ell}}{\sqrt{t}} + O\left(\frac{s + s'}{\sqrt{\ell}} \ln \frac{\sqrt{\ell}}{\sqrt{t}}\right) + O\left(\frac{t}{\ell} \ln \frac{\sqrt{\ell}}{\sqrt{t}}\right). \tag{23}$$

Далее разложим $(1+(n_r+1)/\ell)^{-2}$ по степеням ℓ и подставим асимптотики (20), (21) в уравнения (17), (18). В силу (15), (21), (23), (18) для отсутствия в левой части (17) слагаемых порядка $\ell^{-2} \ln \ell$ достаточно положить $E_0 = 1/(4\pi)$. Приравнивая к нулю слагаемые порядка ℓ^{-1} , $\ell^{-3/2}$ и ℓ^{-2} , получаем следующие задачи для определения g_0, g_1 и g_2 :

$$\mathbf{L}q_0 = 0, \tag{24}$$

$$\int_{\mathbb{R}^2} |g_0|^2 d\tau ds = 1;$$

$$\mathbf{L}g_1 = F_1, \tag{25}$$

где

$$F_{1} = 2\left[\frac{\partial g_{0}}{\partial s} - s\frac{\partial^{2} g_{0}}{\partial \tau^{2}} + (s^{3} - 2ks + s\tau^{2})g_{0}\right],$$

$$\int_{\mathbb{R}^{2}} (g_{0}\overline{g}_{1} + \overline{g}_{0}g_{1}) d\tau ds = -2\int_{\mathbb{R}^{2}} s |g_{0}|^{2} d\tau ds;$$

$$\mathbf{L}g_{2} = F_{2,1} + F_{2,2},$$
(26)

где

$$F_{2,1} = -2s \frac{\partial g_0}{\partial s} + 3s^2 \frac{\partial^2 g_0}{\partial \tau^2} - \tau \frac{\partial g_0}{\partial \tau} - \left[\frac{2}{3} \tau^4 - 2k\tau^2 + k^2 - 6ks^2 + 3s^2\tau^2 + \right.$$

$$\left. + 3s^4 + 3(n_r + 1)^2 \right] g_0 + 2 \left[\frac{\partial g_1}{\partial s} - s \frac{\partial^2 g_1}{\partial \tau^2} + (s^3 - 2ks + s\tau^2) g_1 \right],$$

$$F_{2,2} = \frac{1}{2\pi} \left(4\pi E_1 - 6\ln 2 + \int_{\mathbb{R}^2} \ln((\tau - \tau')^2 + (s - s')^2) \mid g_0(\tau', s') \mid^2 d\tau' ds' \right) g_0,$$

$$\int_{\mathbb{R}^2} (g_0 \overline{g}_2 + \overline{g}_0 g_2) d\tau ds =$$

$$= -\int_{\mathbb{R}^2} \left[\mid g_1 \mid^2 + 2s(g_0 \overline{g}_1 + \overline{g}_0 g_1) + (s^2 - \tau^2/2) \mid g_0 \mid^2 \right] d\tau ds.$$

Здесь оператор L задан формулой (8).

Решениями уравнения (24) из $L^2(\mathbb{R}^2)$ являются собственные функции двумерного осциллятора, отвечающие собственному значению p+1 ($p=0,1,2,\ldots$). Они образуют подпространство $\mathcal{H}_p \subset L^2(\mathbb{R}^2)$, ортонормированный базис в котором состоит из функций $\beta_{j,p-j}(\tau,s), j=0,\ldots,p$. Здесь

$$\beta_{j,i}(\tau,s) = \theta_{j,i}e^{-(s^2+\tau^2)/2}H_j(s)H_i(\tau),$$

где

$$\theta_{j,i} = \frac{(-1)^{j+i}}{2^{(j+i)/2}\sqrt{\pi}\sqrt{j!}\sqrt{i!}}.$$

Следовательно,

$$g_0 = \sum_{j=0}^{p} c_j \beta_{j,p-j}, \tag{27}$$

52 A.B. Перескоков

где c_i — некоторые константы, удовлетворяющие условию нормировки

$$\sum_{j=0}^{p} |c_j|^2 = 1.$$

Они находятся из условий разрешимости для следующих приближений. Используя (24), а также известные свойства полиномов Эрмита [23]

$$sH_j(s) = H_{j+1}(s)/2 + jH_{j-1}(s), \quad H'_i(s) = 2jH_{j-1}(s),$$

преобразуем правую часть уравнения (25). Так как

$$\left[s\frac{\partial^{2}}{\partial s^{2}} + \frac{\partial}{\partial s} + 2s(n_{r}+1)\right]e^{-s^{2}/2}H_{j}(s) = e^{-s^{2}/2}\left[s(s^{2}-1)H_{j}(s) - 4s^{2}jH_{j-1}(s) + 4sj(j-1)H_{j-2}(s) - sH_{j}(s) + 2jH_{j-1}(s) + 2s(n_{r}+1)H_{j}(s)\right] = \\
= e^{-s^{2}/2}\left\{\frac{1}{8}H_{j+3}(s) + \left(\frac{3}{4}j + \frac{3}{4}\right)H_{j+1}(s) + \frac{3}{2}j^{2}H_{j-1}(s) + j(j-1)(j-2)H_{j-3}(s) + + 2n_{r}\left[\frac{1}{2}H_{j+1}(s) + jH_{j-1}(s)\right] - 4j\left[\frac{1}{4}H_{j+1}(s) + \left(j - \frac{1}{2}\right)H_{j-1}(s) + + (j-1)(j-2)H_{j-3}(s)\right]\right\} = \\
+ (j-1)(j-2)H_{j-3}(s) + 2jH_{j-1}(s) + 4j(j-1)\left[\frac{1}{2}H_{j-1}(s) + (j-2)H_{j-3}(s)\right]\right\} = \\
= e^{-s^{2}/2}\left\{\frac{1}{8}H_{j+3}(s) + \left[-\frac{j}{4} + \frac{3}{4} + n_{r}\right]H_{j+1}(s) + + j\left[-\frac{j}{2} + 2n_{r} + 2\right]H_{j-1}(s) + j(j-1)(j-2)H_{j-3}(s)\right\},$$

то F_1 принимает вид

$$F_{1} = 2\left[s\frac{\partial^{2}g_{0}}{\partial s^{2}} + \frac{\partial g_{0}}{\partial s} + 2s(n_{r} + 1)g_{0}\right] =$$

$$= 2\sum_{j=0}^{p} c_{j}\theta_{j,p-j}e^{-(s^{2}+\tau^{2})/2}H_{p-j}(\tau)\left\{H_{j+3}(s)/8 + ((3-j)/4 + n_{r})H_{j+1}(s) + j(-j/2 + 2n_{r} + 2)H_{j-1}(s) + j(j-1)(j-2)H_{j-3}(s)\right\}. \tag{28}$$

Поскольку (28) не содержит функций из \mathcal{H}_p , то уравнение (25) разрешимо. Его решение имеет вид

$$g_1 = -\frac{1}{3} \frac{\partial^3 g_0}{\partial s^3} - 2(n_r + 1) \frac{\partial g_0}{\partial s} + \sum_{j=0}^p c_j^* \beta_{j,p-j},$$

где c_i^* — некоторые константы.

Аналогично доказывается, что $F_{2,1}$ также не содержит функций из \mathcal{H}_p . Поэтому условия разрешимости уравнения (26) принимают вид

$$\int_{\mathbb{P}^2} F_{2,2} \beta_{j,p-j} d\tau ds = 0, \quad j = 0, \dots, p.$$
 (29)

При выполнении (29) функция $g_2 \in L^2(\mathbb{R}^2)$ может быть представлена в виде суммы следующего ряда [24, 23]

$$g_2 = \sum_{\substack{j,i=0\\j+i\neq p}}^{\infty} \frac{1}{2(j+i-p)} \int_{\mathbb{R}^2} (F_{2,1}(\tau',s') + aF_{2,2}(\tau',s')) \beta_{j,i}(\tau',s') d\tau' ds' \beta_{j,i}(\tau,s) +$$

$$+\sum_{j=0}^{p} c_{j}^{**} \beta_{j,p-j}, \tag{30}$$

где c_j^{**} — некоторые константы. Условие (29) позволяют найти входящие в (27) коэффициенты

$$c_{j} = \frac{1}{6 \ln 2 - 4\pi E_{1}} \int_{\mathbb{R}^{4}} \ln((\tau - \tau')^{2} + (s - s')^{2}) |g_{0}(\tau', s')|^{2} g_{0}(\tau, s) \beta_{j, p - j}(\tau, s) d\tau' ds' d\tau ds,$$

 $j = 0, \dots, p$. В результате, приходим к следующей не содержащей малых параметров задаче на собственные значения

$$(6 \ln 2 - 4\pi E_1) g_0 =$$

$$= \int_{\mathbb{R}^2} \Omega(\tau, s, \tau'', s'') \int_{\mathbb{R}^2} \ln((\tau' - \tau'')^2 + (s' - s'')^2) |g_0(\tau', s')|^2 d\tau' ds' g_0(\tau'', s'') d\tau'' ds'', (31)$$

$$\int_{\mathbb{R}^2} |g_0(\tau, s)|^2 d\tau ds = 1. \tag{32}$$

Здесь функция

$$\Omega(\tau, s, \tau'', s'') = \frac{e^{-(s^2 + \tau^2 + (s'')^2 + (\tau'')^2)/2}}{2^p \pi} \sum_{j=0}^p \frac{H_j(s) H_j(s'') H_{p-j}(\tau) H_{p-j}(\tau'')}{j! (p-j)!}.$$

Поскольку в результате преобразования Гаусса [23]

$$\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} (2ix)^n e^{(ix-y)^2} dx = H_n(y),$$

то для ядра Ω имеет место интегральное представление

$$\Omega(\tau, s, \tau'', s'') = \frac{(-1)^p 2^p}{p! \pi^3} e^{-(s^2 + \tau^2 + (s'')^2 + (\tau'')^2)/2} \times$$

$$\times \int_{\mathbb{R}^4} (\tilde{s} \tilde{s}' + \tilde{\tau} \tilde{\tau}')^p e^{(i\tilde{s} - s)^2 + (i\tilde{\tau} - \tau)^2 + (i\tilde{s}' - s')^2 + (i\tilde{\tau}' - \tau')^2} d\tilde{\tau} d\tilde{s} d\tilde{\tau}' d\tilde{s}'.$$

Из (31), (32) следует, что число E_1 может быть записано в виде

$$E_{1} = \frac{3 \ln 2}{2\pi} - \frac{1}{4\pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \Omega(\tau, s, \tau'', s'') g_{0}(\tau'', s'') \overline{g}_{0}(\tau, s) d\tau ds \times$$

$$\times \int_{\mathbb{R}^{2}} \ln((\tau' - \tau'')^{2} + (s' - s'')^{2}) |g_{0}(\tau', s')|^{2} d\tau' ds' d\tau'' ds''. \tag{33}$$

Замечание 1. Уравнение (31) является нелинейным интегральным уравнением. Ранее при нахождении серии асимптотических собственных функций для оператора Хартри нелинейное интегральное уравнение на сфере возникало в работе [14].

Пусть при некотором $p=0,1,2,\ldots$ число $E_1=E_{1,i}^{(p)}$ и функция $g_0=g_{0,i}^{(p)}$ являются решением задачи (31), (32). Определим число $\lambda_{n,i}^{(p)}$ по формуле (3), а также функцию

$$\psi_{n,i}^{(p)} = \varepsilon^{3/2} \sum_{j=0}^{p} c_j v_{n,p-j,j}(\varepsilon q),$$

где v_{n,k,n_r} задаются формулой (12), а коэффициенты c_j совпадают с коэффициеттами разложения g_0 согласно (27)(см. теорему 1). Справедлива

Теорема 2. При $\varepsilon \to 0$ и n порядка $\varepsilon^{-1/2}$ число $\lambda_{n,i}^{(p)}$ является асимтотическим собственным значением, а функция $\psi_{n,i}^{(p)}$ — главным членом разложения соответствующей асимптотической собственной функции задачи (1), (2) в пространстве $L^2(\mathbb{R}^3)$. Число $\lambda_{n,i}^{(p)}$ расположено вблизи верхней границы спектрального кластера, отвечающего квантовому числу n, а функция $\psi_{n,i}^{(p)}$ по тод O(n) сосредоточена вблизи окружености $\Gamma = \{(r,\theta,\varphi) \mid r=2n^2, \; \theta=\pi/2\}$ в \mathbb{R}^3 .

3амечание 2. Поправка к $\psi_{n,i}^{(p)}$ строится аналогично (30), однако имеет весьма громоздкий вид.

4 Решение спектральной задачи на подпространствах \mathcal{H}_0 , \mathcal{H}_1

Найдем решение задачи (31), (32) при p=0. Будем искать $g_{0,0}^{(0)}$ в виде

$$g_{0,0}^{(0)} = c_0^{(0)} \beta_{0,0} = \frac{c_0^{(0)}}{\sqrt{\pi}} e^{-(s^2 + \tau^2)/2}.$$
 (34)

В силу условия нормировки (32) константа $c_0^{(0)}$ удовлетворяет равенству

$$c_0^{(0)} = 1. (35)$$

Замечание 3. Формулы для асимптотических собственных функций в статье приводятся с точностью до произвольного множителя вида $e^{i\varphi}$, где $\varphi \in \mathbb{R}$.

Подставляя (34) в соотношение (33), имеем:

$$E_{1,0}^{(0)} = \frac{3\ln 2}{2\pi} - \frac{1}{4\pi^3} \int_{\mathbb{R}^4} \ln((\tau' - \tau'')^2 + (s' - s'')^2) e^{-s'^2 - \tau'^2 - (s'')^2 - (\tau'')^2} d\tau' ds' d\tau'' ds''.$$
(36)

Далее, делая замену переменных

$$\xi = \tau'' - \tau', \quad \eta = s'' - s',$$
 (37)

а также учитывая при n=0 равенство [25]

$$\int_{\mathbb{R}} r^{2n} e^{-2r^2} dr = \frac{\sqrt{\pi}(2n)!}{2^{3n}\sqrt{2n}!}, \quad n = 0, 1, 2, \dots,$$
(38)

преобразуем (36) к виду

$$E_{1,0}^{(0)} = \frac{3\ln 2}{2\pi} - \frac{1}{8\pi^2} \int_{\mathbb{R}^2} \ln(\xi^2 + \eta^2) e^{-(\xi^2 + \eta^2)/2} d\xi d\eta.$$
 (39)

Наконец, переходя в правой части (39) к полярным координатам

$$\xi = \rho \cos \varphi, \quad \eta = \rho \sin \varphi$$

и используя интеграл [25]

$$\int_0^\infty e^{-r/2} \ln r dr = -2\gamma + 2 \ln 2,\tag{40}$$

где γ – постоянная Эйлера, находим, что

$$E_{1,0}^{(0)} = \frac{3\ln 2}{2\pi} - \frac{1}{8\pi^2} \int_0^{2\pi} \int_0^{\infty} \ln \rho^2 e^{-\rho^2/2} \rho d\rho d\varphi =$$

$$= \frac{3\ln 2}{2\pi} - \frac{1}{8\pi} \int_0^{\infty} e^{-r/2} \ln r dr = \frac{5\ln 2 + \gamma}{4\pi}.$$

При p = 1 решение будем искать в виде

$$g_{0,i}^{(1)} = c_{0,i}^{(1)} \beta_{0,1} + c_{1,i}^{(1)} \beta_{1,0} = -\sqrt{\frac{2}{\pi}} e^{-(s^2 + \tau^2)/2} (c_{0,i}^{(1)} \tau + c_{1,i}^{(1)} s), \tag{41}$$

где $c_{0,i}^{(1)},c_{1,i}^{(1)}$ — константы. Подставляя функцию (41) в (31), (32), приходим к системе уравнений

$$(4\pi E_1^{(1)} - 6\ln 2)c_0^{(1)} + I(c_0^{(1)}, c_1^{(1)}) = 0, (42)$$

$$(4\pi E_1^{(1)} - 6\ln 2)c_1^{(1)} + I(c_1^{(1)}, c_0^{(1)}) = 0, (43)$$

$$|c_0^{(1)}|^2 + |c_1^{(1)}|^2 = 1,$$
 (44)

где

$$I(c_0^{(1)}, c_1^{(1)}) = \frac{4}{\pi^2} \int_{\mathbb{R}^4} \ln((\tau' - \tau'')^2 + (s' - s'')^2) e^{-((s')^2 + (\tau')^2 + (s'')^2 + (\tau'')^2)} [|c_0^{(1)}|^2 (\tau')^2 + |c_0^{(1)}|^2 (s')^2 + |c_0^{(1)}|^2 + |c_0^{(1)}|^2 + |c_0$$

(Индекс i для краткости обозначений опущен.)

Вычислим входящий в $I(c_0^{(1)}, c_1^{(1)})$ интеграл. Делая замену переменных (37), имеем:

$$I(c_0^{(1)}, c_1^{(1)}) = \frac{4}{\pi^2} \int_{\mathbb{R}^2} \ln(\xi^2 + \eta^2) e^{-(\xi^2 + \eta^2)/2} I_1(c_0^{(1)}, c_1^{(1)}, \xi, \eta) d\xi d\eta.$$
 (45)

Здесь

$$I_{1}(c_{0}^{(1)}, c_{1}^{(1)}, \xi, \eta) = \int_{\mathbb{R}^{2}} e^{-2(s'+\eta/2)^{2}-2(\tau'+\xi/2)^{2}} [|c_{0}^{(1)}|^{2} (\tau')^{2} + + |c_{1}^{(1)}|^{2} (s')^{2} + + (c_{0}^{(1)}\overline{c}_{1}^{(1)} + \overline{c}_{0}^{(1)}c_{1}^{(1)})s'\tau'] [c_{0}^{(1)}(\xi+\tau')^{2} + c_{1}^{(1)}(\xi+\tau')(\eta+s')]d\tau'ds'.$$

Делая далее еще одну замену

$$x = s' + \eta/2, \quad y = \tau' + \xi/2$$

и пользуясь равенствами (38) при n=0,1,2 находим, что

$$I_{1}(c_{0}^{(1)}, c_{1}^{(1)}, \xi, \eta) = \frac{\pi}{32} \{ 3 \mid c_{0}^{(1)} \mid^{2} c_{0}^{(1)} + \mid c_{1}^{(1)} \mid^{2} c_{0}^{(1)} + (c_{0}^{(1)} \overline{c}_{1}^{(1)} + + + \overline{c}_{0}^{(1)} c_{1}^{(1)}) c_{1}^{(1)} + + + \mid c_{0}^{(1)} \mid^{2} \xi^{2} + \mid c_{1}^{(1)} \mid^{2} \eta^{2} + (c_{0}^{(1)} \overline{c}_{1}^{(1)} + \overline{c}_{0}^{(1)} c_{1}^{(1)}) \xi \eta] c_{0}^{(1)} - \\
- [4 \mid c_{0}^{(1)} \mid^{2} c_{0}^{(1)} + (c_{0}^{(1)} \overline{c}_{1}^{(1)} + \overline{c}_{0}^{(1)} c_{1}^{(1)}) c_{1}^{(1)}] \xi^{2} - 2 [(c_{0}^{(1)} \overline{c}_{1}^{(1)} + \overline{c}_{0}^{(1)} c_{1}^{(1)}) c_{0}^{(1)} + + + (|c_{0}^{(1)}|^{2} + |c_{1}^{(1)}|^{2}) c_{1}^{(1)}] \xi \eta - (c_{0}^{(1)} \overline{c}_{1}^{(1)} + \overline{c}_{0}^{(1)} c_{1}^{(1)}) c_{1}^{(1)} \eta^{2} + + + (|c_{0}^{(1)}|^{2} + |c_{1}^{(1)}|^{2} + |c_{0}^{(1)}|^{2} \xi^{2} + |c_{1}^{(1)}|^{2} \eta^{2} + + + (c_{0}^{(1)} \overline{c}_{1}^{(1)} + \overline{c}_{0}^{(1)} c_{1}^{(1)}) \xi \eta] (c_{0}^{(1)} \xi^{2} + c_{1}^{(1)} \xi \eta) \}.$$

$$(46)$$

Подставим, наконец, правую часть (46) в (45). Переходя в получившемся интеграле к полярным координатам, а также используя (40) и равенства [25]

$$\int_0^\infty r^n e^{-r/2} \ln r dr = n! 2^{n+1} \left(\sum_{k=1}^n \frac{1}{k} - \gamma + \ln 2 \right), \quad n = 1, 2, \dots$$

при n = 1, 2, приходим к следующей лемме.

Лемма 2. Справедливо равенство

$$I(c_0^{(1)}, c_1^{(1)}) = \left(\ln 2 - \gamma + \frac{5}{8}\right) \left(|c_0^{(1)}|^2 + |c_1^{(1)}|^2\right) c_0^{(1)} + \left(c_0^{(1)} \overline{c}_1^{(1)} - \overline{c}_0^{(1)} c_1^{(1)}\right) \frac{c_1^{(1)}}{8}. \tag{47}$$

С учетом (47) система уравнений (42)–(44) принимает вид

$$\left(4\pi E_1^{(1)} - 5\ln 2 - \gamma + \frac{5}{8}\right)c_0^{(1)} + \left(c_0^{(1)}\overline{c}_1^{(1)} - \overline{c}_0^{(1)}c_1^{(1)}\right)\frac{c_1^{(1)}}{8} = 0,$$
(48)

$$\left(4\pi E_1^{(1)} - 5\ln 2 - \gamma + \frac{5}{8}\right)c_1^{(1)} - \left(c_0^{(1)}\overline{c}_1^{(1)} - \overline{c}_0^{(1)}c_1^{(1)}\right)\frac{c_0^{(1)}}{8} = 0,$$
(49)

$$|c_0^{(1)}|^2 + |c_1^{(1)}|^2 = 1.$$
 (50)

Система (48)–(50) при

$$E_{1,0}^{(1)} = \frac{1}{4\pi} \left(5\ln 2 + \gamma - \frac{5}{8} \right)$$

имеет однопараметрическое семейство вещественных решений

$$c_{0.0}^{(1)} = \cos \alpha, \quad c_{1.0}^{(1)} = \sin \alpha,$$
 (51)

где $\alpha \in \mathbb{R}$, а при

$$E_{1,1}^{(1)} = \frac{1}{4\pi} \left(5\ln 2 + \gamma - \frac{3}{4} \right)$$

— комплексные решения

$$c_{0,1}^{(1)} = \frac{1}{\sqrt{2}}, \quad c_{1,1}^{(1)} = \pm \frac{i}{\sqrt{2}}.$$
 (52)

Справедлива

Теорема 3. При p = 0, 1 собственные значения задачи (31), (32) имеют вид (4)–(6), а соответствующие собственные функции при p = 0 определяются равенствами (34), (35), а при p = 1 — равенствами (41), (51), (52).

5 Спектральная задача на подпространстве \mathcal{H}_2 . Вещественные решения

При p=2 будем искать решение задачи (31), (32) в виде

$$g_{0,i}^{(2)} = c_{0,i}^{(2)} \beta_{0,2} + c_{1,i}^{(2)} \beta_{1,1} + c_{2,i}^{(2)} \beta_{2,0} =$$

$$= \frac{1}{\sqrt{2\pi}} e^{-(s^2 + \tau^2)/2} [c_{0,i}^{(2)} (2\tau^2 - 1) + c_{1,i}^{(2)} 2\sqrt{2\tau} s + c_{2,i}^{(2)} (2s^2 - 1)]. \tag{53}$$

Тогда система (31), (32) примет вид

$$(4\pi E_1^{(2)} - 6\ln 2)c_0^{(2)} + I_2(c_0^{(2)}, c_1^{(2)}, c_2^{(2)}) = 0, (54)$$

$$(4\pi E_1^{(2)} - 6\ln 2)c_1^{(2)} + I_3(c_0^{(2)}, c_1^{(2)}, c_2^{(2)}) = 0, (55)$$

$$(4\pi E_1^{(2)} - 6\ln 2)c_2^{(2)} + I_2(c_2^{(2)}, c_1^{(2)}, c_0^{(2)}) = 0, (56)$$

$$|c_0^{(2)}|^2 + |c_1^{(2)}|^2 + |c_2^{(2)}|^2 = 1.$$
 (57)

Здесь

$$I_{2}(c_{0}^{(2)}, c_{1}^{(2)}, c_{2}^{(2)}) = \frac{1}{4\pi^{2}} \int_{\mathbb{R}^{4}} \ln((\tau - \tau')^{2} + (s - s')^{2}) e^{-((s')^{2} + (\tau')^{2} + s^{2} + \tau^{2})} \times$$

$$\times I_{4}(c_{0}^{(2)}, c_{1}^{(2)}, c_{2}^{(2)}, \tau', s', \tau, s) (2\tau^{2} - 1) d\tau' ds' d\tau ds,$$

$$I_{3}(c_{0}^{(2)}, c_{1}^{(2)}, c_{2}^{(2)}) = \frac{1}{\sqrt{2}\pi^{2}} \int_{\mathbb{R}^{4}} \ln((\tau - \tau')^{2} + (s - s')^{2}) e^{-((s')^{2} + (\tau')^{2} + s^{2} + \tau^{2})} \times$$

$$\times I_{4}(c_{0}^{(2)}, c_{1}^{(2)}, c_{2}^{(2)}, \tau', s', \tau, s) \tau s d\tau' ds' d\tau ds,$$

где

$$I_4(c_0^{(2)}, c_1^{(2)}, c_2^{(2)}, \tau', s', \tau, s) = \{ |c_0^{(2)}|^2 (2(\tau')^2 - 1)^2 + 8 |c_1^{(2)}|^2 (\tau's')^2 + |c_2^{(2)}|^2 (2(s')^2 - 1)^2 + 2\sqrt{2}(c_0^{(2)}\bar{c}_1^{(2)} + \bar{c}_0^{(2)}c_1^{(2)})\tau's'(2(\tau')^2 - 1) + |c_2^{(2)}|^2 (2(s')^2 - 1)^2 + 2\sqrt{2}(c_0^{(2)}\bar{c}_1^{(2)} + \bar{c}_0^{(2)}c_1^{(2)})\tau's'(2(\tau')^2 - 1) + |c_2^{(2)}|^2 (2(s')^2 - 1)^2 + 2\sqrt{2}(c_0^{(2)}\bar{c}_1^{(2)} + \bar{c}_0^{(2)}c_1^{(2)})\tau's'(2(\tau')^2 - 1) + |c_2^{(2)}|^2 (2(s')^2 - 1)^2 + 2\sqrt{2}(c_0^{(2)}\bar{c}_1^{(2)} + \bar{c}_0^{(2)}c_1^{(2)})\tau's'(2(\tau')^2 - 1) + |c_0^{(2)}|^2 (2(s')^2 - 1)^2 + 2\sqrt{2}(c_0^{(2)}\bar{c}_1^{(2)} + \bar{c}_0^{(2)}c_1^{(2)})\tau's'(2(\tau')^2 - 1) + |c_0^{(2)}|^2 (2(s')^2 - 1)^2 + 2\sqrt{2}(c_0^{(2)}\bar{c}_1^{(2)} + \bar{c}_0^{(2)}c_1^{(2)})\tau's'(2(\tau')^2 - 1) + |c_0^{(2)}|^2 (2(s')^2 - 1)^2 + 2\sqrt{2}(c_0^{(2)}\bar{c}_1^{(2)} + \bar{c}_0^{(2)}c_1^{(2)})\tau's'(2(\tau')^2 - 1) + |c_0^{(2)}|^2 (2(s')^2 - 1)^2 + |c_0^{(2)}|^2 (2(s$$

$$+2\sqrt{2}(c_2^{(2)}\overline{c}_1^{(2)} + \overline{c}_2^{(2)}c_1^{(2)})\tau's'(2(s')^2 - 1) + (c_0^{(2)}\overline{c}_2^{(2)} + \overline{c}_0^{(2)}c_2^{(2)})(2(\tau')^2 - 1) \times \\ \times (2(s')^2 - 1)\}[c_0^{(2)}(2\tau^2 - 1) + 2\sqrt{2}c_1^{(2)}\tau s + c_2^{(2)}(2s^2 - 1)].$$

(Индекс i снова опущен.)

Вычисления, аналогичные случаям p=0,1, но значительно более громоздкие, приводят к следующей лемме.

Лемма 3. Справедливы равенства

$$I_{2}(c_{0}^{(2)}, c_{1}^{(2)}, c_{2}^{(2)}) = (\ln 2 - \gamma)(|c_{0}^{(2)}|^{2} + |c_{1}^{(2)}|^{2} + |c_{2}^{(2)}|^{2}) +$$

$$+ \frac{1}{128} \left\{ |c_{0}^{(2)}|^{2} \left(\frac{247}{2} c_{0}^{(2)} + \frac{c_{2}^{(2)}}{2} \right) + |c_{1}^{(2)}|^{2} \left(153 c_{0}^{(2)} - c_{2}^{(2)} \right) +$$

$$+ |c_{2}^{(2)}|^{2} \left(\frac{343}{2} c_{0}^{(2)} + \frac{c_{2}^{(2)}}{2} \right) - 15 \left(c_{0}^{(2)} \overline{c}_{1}^{(2)} + \overline{c}_{0}^{(2)} c_{1}^{(2)} \right) c_{1}^{(2)} - 9 \left(c_{2}^{(2)} \overline{c}_{1}^{(2)} +$$

$$+ \overline{c}_{2}^{(2)} c_{1}^{(2)} \right) c_{1}^{(2)} + \left(c_{0}^{(2)} \overline{c}_{2}^{(2)} + \overline{c}_{0}^{(2)} c_{2}^{(2)} \right) \left(\frac{c_{0}^{(2)}}{2} - \frac{9}{2} c_{2}^{(2)} \right) \right\},$$

$$I_{3}(c_{0}^{(2)}, c_{1}^{(2)}, c_{2}^{(2)}) = (\ln 2 - \gamma)(|c_{0}^{(2)}|^{2} + |c_{1}^{(2)}|^{2} + |c_{2}^{(2)}|^{2}) +$$

$$+ \frac{1}{128} \left\{ 153 |c_{0}^{(2)}|^{2} c_{1}^{(2)} + 142 |c_{1}^{(2)}|^{2} c_{1}^{(2)} + 153 |c_{2}^{(2)}|^{2} c_{1}^{(2)} -$$

$$- \left(c_{0}^{(2)} \overline{c}_{2}^{(2)} + \overline{c}_{0}^{(2)} c_{2}^{(2)} \right) c_{1}^{(2)} - \left(c_{0}^{(2)} \overline{c}_{1}^{(2)} + \overline{c}_{0}^{(2)} c_{1}^{(2)} \right) \left(15 c_{0}^{(2)} + 9 c_{2}^{(2)} \right) -$$

$$- \left(c_{2}^{(2)} \overline{c}_{1}^{(2)} + \overline{c}_{2}^{(2)} c_{1}^{(2)} \right) \left(9 c_{0}^{(2)} + 15 c_{2}^{(2)} \right) \right\}.$$

$$(59)$$

С учетом (58), (59) система уравнений (54)–(57) принимает вид

$$-\sigma^{(2)}c_0^{(2)} + |c_0^{(2)}|^2 \left(\frac{247}{2}c_0^{(2)} + \frac{c_2^{(2)}}{2}\right) + |c_1^{(2)}|^2 \left(153c_0^{(2)} - c_2^{(2)}\right) +$$

$$+ |c_2^{(2)}|^2 \left(\frac{343}{2}c_0^{(2)} + \frac{c_2^{(2)}}{2}\right) - 15\left(c_0^{(2)}\overline{c}_1^{(2)} + \overline{c}_0^{(2)}c_1^{(2)}\right)c_1^{(2)} -$$

$$-9\left(c_2^{(2)}\overline{c}_1^{(2)} + \overline{c}_2^{(2)}c_1^{(2)}\right)c_1^{(2)} + \left(c_0^{(2)}\overline{c}_2^{(2)} + \overline{c}_0^{(2)}c_2^{(2)}\right)\left(\frac{c_0^{(2)}}{2} - \frac{9}{2}c_2^{(2)}\right) = 0,$$

$$-\sigma^{(2)}c_1^{(2)} + 153|c_0^{(2)}|^2c_1^{(2)} + 142|c_1^{(2)}|^2c_1^{(2)} + 153|c_2^{(2)}|^2c_1^{(2)} - \left(c_0^{(2)}\overline{c}_2^{(2)} + \overline{c}_0^{(2)}c_1^{(2)}\right)\left(15c_0^{(2)} + 9c_2^{(2)}\right) -$$

$$-\left(c_0^{(2)}\overline{c}_2^{(2)} + \overline{c}_2^{(2)}c_1^{(2)}\right)\left(9c_0^{(2)} + 15c_2^{(2)}\right) = 0,$$

$$-\sigma^{(2)}c_2^{(2)} + |c_0^{(2)}|^2\left(\frac{c_0^{(2)}}{2} + \frac{343}{2}c_2^{(2)}\right) + |c_1^{(2)}|^2\left(-c_0^{(2)} + 153c_2^{(2)}\right) +$$

$$+|c_2^{(2)}|^2\left(\frac{c_0^{(2)}}{2} + \frac{247}{2}c_2^{(2)}\right) - 9\left(c_0^{(2)}\overline{c}_1^{(2)} + \overline{c}_0^{(2)}c_1^{(2)}\right)c_1^{(2)} - 15\left(c_2^{(2)}\overline{c}_1^{(2)} + \overline{c}_0^{(2)}c_1^{(2)}\right)c_1^{(2)} + \overline{c}_0^{(2)}c_1^{(2)} + \overline{c}_0^{(2)}c_1^{(2)}\right)c_1^{(2)} - 15\left(c_2^{(2)}\overline{c}_1^{(2)} + \overline{c}_0^{(2)}c_1^{(2)}\right)c_1^{(2)} + \overline{c}_0^{(2)}c_1^{(2)} + \overline{c}_0^{(2)}c_2^{(2)}\right)\left(-\frac{9}{2}c_0^{(2)} + \frac{c_2^{(2)}}{2}\right) = 0,$$

$$(61)$$

$$|c_0^{(2)}|^2 + |c_1^{(2)}|^2 + |c_2^{(2)}|^2 = 1.$$
 (63)

Здесь $\sigma^{(2)} = 128(-4\pi E_1^{(2)} + 5\ln 2 + \gamma).$

Перейдем к решению системы (60)-(63). (Для упрощения обозначений индекс 2 сверху у $c_0^{(2)}, c_1^{(2)}, c_2^{(2)}, \sigma^{(2)}$ будем ниже опускать.) Вначале найдем вещественные решения. Если $c_0, c_1, c_2 \in \mathbb{R}$, то система (60)-(63) принимает вид

$$-\sigma c_0 + c_0^2 \left(\frac{247}{2}c_0 + \frac{3}{2}c_2\right) + c_1^2 \left(123c_0 - 19c_2\right) + c_2^2 \left(\frac{325}{2}c_0 + \frac{c_2}{2}\right) = 0,$$

$$c_1(-\sigma + 123c_0^2 + 142c_1^2 + 123c_2^2 - 38c_0c_2) = 0,$$

$$-\sigma c_2 + c_0^2 \left(\frac{c_0}{2} + \frac{325}{2}c_2\right) + c_1^2 \left(-19c_0 + 123c_2\right) + c_2^2 \left(\frac{3}{2}c_0 + \frac{247}{2}c_2\right) = 0,$$

$$c_0^2 + c_1^2 + c_2^2 = 1.$$
(64)

Учитывая (64), при $c_1 = 0$ получаем систему

$$\left(-\sigma + 123 + \frac{c_0^2}{2} + \frac{79}{2}c_2^2\right)c_0 + \left(-19 + \frac{41}{2}c_0^2 + \frac{39}{2}c_2^2\right)c_2 = 0,\tag{65}$$

$$\left(-19 + \frac{39}{2}c_0^2 + \frac{41}{2}c_2^2\right)c_0 + \left(-\sigma + 123 + \frac{79}{2}c_0^2 + \frac{c_2^2}{2}\right)c_2 = 0,\tag{66}$$

$$c_0^2 + c_2^2 = 1, (67)$$

а при $c_1 \neq 0$ приходим к уравнениям (65), (66),

$$-\sigma + 142 - 19(c_0 + c_2)^2 = 0, (68)$$

$$c_1^2 = 1 - c_0^2 - c_2^2. (69)$$

Рассмотрим случай, когда $c_1=0$. Обозначим $x=c_2^2$. Тогда, исключая c_0 из (65)-(67), имеем:

$$\sigma^2 - 286\sigma - 1520x^2 + 1520x + 20068 = 0, (70)$$

$$\sigma^{2}(x-1) - \sigma(x-1)(78x+247) + \left(1522x^{3} + 8109x^{2} + \frac{11243}{2}x - \frac{61009}{4}\right) = 0.$$
 (71)

Из уравнений (70), (71) вытекает, что

$$\left(x - \frac{1}{2}\right)\left(-78(x - 1)\sigma + 3042x^2 + 6590x - \frac{19263}{2}\right) = 0.$$
 (72)

Если x = 1/2, то из уравнения (70) находим

$$\sigma_1^{(2)} = 142, \ \sigma_2^{(2)} = 144.$$
 (73)

Соответствующие коэффициенты в формуле (53) имеют вид

$$c_{0,1}^{(2)} = \frac{1}{\sqrt{2}}, \quad c_{1,1}^{(2)} = 0, \quad c_{2,1}^{(2)} = -\frac{1}{\sqrt{2}},$$

$$c_{0,2}^{(2)} = \frac{1}{\sqrt{2}}, \quad c_{1,2}^{(2)} = 0, \quad c_{2,2}^{(2)} = \frac{1}{\sqrt{2}}.$$

$$(74)$$

Если же $x \neq 1/2$, то выражая σ из (72) и подставляя его в (70), получаем уравнение

 $x^4 - 4x^3 + \frac{15971}{3042}x^2 - \frac{1141}{507}x + \frac{1}{2704} = 0.$

Оно сводится к двум квадратным уравнениям:

$$(x - 3/2)^2 = 0 (75)$$

И

$$x^2 - x + \frac{1}{6084} = 0. (76)$$

Так как $x \in [0,1]$, то уравнение (75) решений не имеет. В случае уравнения (76) находим корни

$$x_1 = \frac{1}{78(39 + 4\sqrt{95})}, \quad x_2 = 1 - \frac{1}{78(39 + 4\sqrt{95})}.$$

Они отвечают значению

$$\sigma_0^{(2)} = 123 + \frac{19}{39}. (77)$$

Доказана

Лемма 4. Система (65)–(67) разрешима лишь в случае, когда σ имеет вид (73) или (77).

Перейдем к изучению уравнений (65), (66), (68), (69), которые возникают при $c_1 \neq 0$. Исключая из этой системы σ и c_1^2 , находим, что

$$\left(-19 + \frac{39}{2}c_0^2 + 38c_0c_2 + \frac{117}{2}c_2^2\right)c_0 + \left(-19 + \frac{41}{2}c_0^2 + \frac{39}{2}c_2^2\right)c_2 = 0,\tag{78}$$

$$\left(-19 + \frac{39}{2}c_0^2 + \frac{41}{2}c_2^2\right)c_0 + \left(-19 + \frac{117}{2}c_0^2 + 38c_0c_2 + \frac{39}{2}c_2^2\right)c_2 = 0.$$
(79)

Если $c_0=c_2=0$, то из (68), (69) следует, что $c_1=1$, а $\sigma=142$. Если же $c_0c_2\neq 0$, то условием разрешимости (78), (79) будет равенство

$$\left(-19 + \frac{39}{2}c_0^2 + 38c_0c_2 + \frac{117}{2}c_2^2\right)\left(-19 + \frac{117}{2}c_0^2 + 38c_0c_2 + \frac{39}{2}c_2^2\right) - \left(-19 + \frac{39}{2}c_0^2 + \frac{41}{2}c_2^2\right)\left(-19 + \frac{41}{2}c_0^2 + \frac{39}{2}c_2^2\right) = 0.$$

Вследствие симметрии уравнений (78), (79) оно может быть записано в виде

$$(c_0 + c_2)^2 [38 - 39(c_0 + c_2)^2] = 0.$$

Пусть $c_0+c_2=0$. Тогда из соотношения (68) находим, что $\sigma_1^{(2)}=142$. Этому значению σ соотвествует однопараметрическое семейство решений (53), коэффициенты которого имеют вид

$$c_{0,1}^{(2)} = \frac{\sin \alpha}{\sqrt{2}}, \quad c_{1,1}^{(2)} = \cos \alpha, \quad c_{2,1}^{(2)} = -\frac{\sin \alpha}{\sqrt{2}}.$$
 (80)

Здесь $\alpha \in \mathbb{R}$.

В случае, если

$$(c_0 + c_2)^2 = \frac{38}{39},$$

для σ снова получаем значение (77). Ему соотвествует однопараметрическое семейство решений (53), коэффициенты которого имеют вид

$$c_{0,0}^{(2)} = \frac{1}{\sqrt{39}} \left(\frac{\sqrt{38}}{2} + \sqrt{10} \cos \alpha \right), \quad c_{1,0}^{(2)} = \frac{2\sqrt{5}}{\sqrt{39}} \sin \alpha, \quad c_{2,0}^{(2)} = \frac{1}{\sqrt{39}} \left(\frac{\sqrt{38}}{2} - \sqrt{10} \cos \alpha \right). \tag{81}$$

Здесь $\alpha \in \mathbb{R}$. Отметим, что если $\sigma = \sigma_0^{(2)}$ и $\sigma = \sigma_1^{(2)}$, то построенные выше при $c_1 = 0$ решения системы (65)–(67) содержатся в однопараметрических семействах (81), (80). Доказана

Теорема 4. При p=2 собственные значения задачи (31), (32), отвечающие вещественным собственным функциям, имеют вид (4), (77), (73). Соответствующие собственные функции определяются равенствами (53), (81), (80), (74).

6 Спектральная задача на подпространстве \mathcal{H}_2 . Комплексные решения

Перейдем к построению комплексных решений системы (60)–(63). В силу замечания 3 мы можем считать, что $c_1 \in \mathbb{R}$. Поэтому положим

$$c_0^{(2)} = \mid c_0 \mid e^{i\varphi_0}, \quad c_1^{(2)} = \mid c_1 \mid, \quad c_2^{(2)} = \mid c_2 \mid e^{i\varphi_2}.$$

Поделим далее (60) на $e^{i\varphi_0}$, (62) на $e^{i\varphi_2}$ и приравняем в уравнениях (60)–(62) к нулю вещественные и мнимые части. В результате получаем систему

$$-\sigma \mid c_{0} \mid + \frac{247}{2} \mid c_{0} \mid^{3} + \frac{1}{2} \mid c_{0} \mid^{2} \mid c_{2} \mid \cos(\varphi_{2} - \varphi_{0}) + 153 \mid c_{1} \mid^{2} \mid c_{0} \mid -$$

$$- \mid c_{1} \mid^{2} \mid c_{2} \mid \cos(\varphi_{2} - \varphi_{0}) + \mid c_{2} \mid^{2} \left(\frac{343}{2} \mid c_{0} \mid + \frac{1}{2} \mid c_{2} \mid \cos(\varphi_{2} - \varphi_{0}) \right) -$$

$$-30 \mid c_{0} \mid \mid c_{1} \mid^{2} \cos^{2} \varphi_{0} - 18 \mid c_{2} \mid \mid c_{1} \mid^{2} \cos \varphi_{2} \cos \varphi_{0} +$$

$$+2 \mid c_{0} \mid \mid c_{2} \mid \cos(\varphi_{2} - \varphi_{0}) \left(\frac{\mid c_{0} \mid}{2} - \frac{9}{2} \mid c_{2} \mid \cos(\varphi_{2} - \varphi_{0}) \right) = 0,$$

$$\mid c_{1} \mid \left\{ -\sigma + 153 \mid c_{0} \mid^{2} + 142 \mid c_{1} \mid^{2} + 153 \mid c_{2} \mid^{2} -$$

$$-2 \mid c_{0} \mid \mid c_{2} \mid \cos(\varphi_{2} - \varphi_{0}) - 2 \mid c_{0} \mid \cos\varphi_{0} (15 \mid c_{0} \mid \cos\varphi_{0} + 9 \mid c_{2} \mid \cos\varphi_{2}) -$$

$$-2 \mid c_{2} \mid \cos\varphi_{2} (9 \mid c_{0} \mid \cos\varphi_{0} + 15 \mid c_{2} \mid \cos\varphi_{2}) \right\} = 0,$$

$$-\sigma \mid c_{2} \mid + \mid c_{0} \mid^{2} \left(\frac{1}{2} \mid c_{0} \mid \cos(\varphi_{2} - \varphi_{0}) + \frac{343}{2} \mid c_{2} \mid \right) +$$

$$+ \mid c_{1} \mid^{2} \left(-\mid c_{0} \mid \cos(\varphi_{2} - \varphi_{0}) + 153 \mid c_{2} \mid \right) + \mid c_{2} \mid^{2} \left(\frac{1}{2} \mid c_{0} \mid \cos(\varphi_{2} - \varphi_{0}) +$$

$$+ \frac{247}{2} \mid c_{2} \mid \right) - 18 \mid c_{0} \mid \mid c_{1} \mid^{2} \cos\varphi_{0} \cos\varphi_{2} - 30 \mid c_{2} \mid \mid c_{1} \mid^{2} \cos^{2}\varphi_{0} +$$

$$+2 |c_{0}| |c_{2}| \cos(\varphi_{2} - \varphi_{0}) \left(-\frac{9}{2} |c_{0}| \cos(\varphi_{2} - \varphi_{0}) + \frac{|c_{2}|}{2}\right) = 0, \tag{83}$$

$$|c_{0}|^{2} + |c_{1}|^{2} + |c_{2}|^{2} = 1, \tag{84}$$

$$c_{1} \sin(\varphi_{2} - \varphi_{0}) \left(\frac{|c_{0}|^{2}}{2} - |c_{1}|^{2} + \frac{|c_{2}|^{2}}{2} - 9|c_{0}||c_{2}| \cos(\varphi_{2} - \varphi_{0})\right) + \frac{|c_{2}|}{2} + \frac{|c_{2}|^{2}}{2} + \frac{|c_{2}|^{2}}{2$$

$$|c_{2}| \sin(\varphi_{2} - \varphi_{0}) \left(\frac{|c_{0}|^{2}}{2} - |c_{1}|^{2} + \frac{|c_{2}|^{2}}{2} - 9 |c_{0}| |c_{2}| \cos(\varphi_{2} - \varphi_{0}) \right) + + |c_{1}|^{2} \sin\varphi_{0}(30 |c_{0}| \cos\varphi_{0} + 18 |c_{2}| \cos\varphi_{2}) = 0,$$
(85)

$$|c_{0}| \sin(\varphi_{2} - \varphi_{0}) \left(\frac{|c_{0}|^{2}}{2} - |c_{1}|^{2} + \frac{|c_{2}|^{2}}{2} - 9 |c_{0}| |c_{2}| \cos(\varphi_{2} - \varphi_{0}) \right) -$$

$$-|c_{1}|^{2} \sin\varphi_{2} (18 |c_{0}| \cos\varphi_{0} + 30 |c_{2}| \cos\varphi_{2}) = 0,$$

$$|c_{1}| \{ |c_{0}| \sin\varphi_{0} (5 |c_{0}| \cos\varphi_{0} + 3 |c_{2}| \cos\varphi_{2}) +$$

$$+|c_{2}| \sin\varphi_{2} (3 |c_{0}| \cos\varphi_{0} + 5 |c_{2}| \cos\varphi_{2}) \} = 0.$$

$$(87)$$

Уравнение (87) здесь можно отбросить, так как оно является линейной комбинацией (85), (86).

Анализ уравнений (85), (86) показывает, что комплексные решения спектральной задачи на подпространстве \mathcal{H}_2 могут существовать в следующих пяти случаях.

- 1 случай. $c_1 = 0$.
- 2 случай. $|c_2| = 0, |c_0| \neq 0, \varphi_0 = \pm \pi/2.$
- 3 случай. $|c_0|=0, |c_2|\neq 0, \varphi_2=\pm \pi/2.$
- 4 случай. $\varphi_0 = \varphi_2 = \pm \pi/2$.
- 5 случай. $|c_0| = |c_2| \neq 0, \varphi_2 = -\varphi_0.$

Рассмотрим случай 1. Пусть $c_1=0$. Тогда из уравнений (84), (85) следует, что

$$\cos\left(\varphi_2 - \varphi_0\right) = \frac{1}{18 \mid c_0 \mid \mid c_2 \mid}.\tag{88}$$

(При $\sin (\varphi_2 - \varphi_0) = 0$ снова приходим к вещественным решениям.) Далее подставим правую часть (88) в (82), (83). В результате получаем систему

$$|c_{0}| \left\{ -\sigma + \frac{247}{2} + |c_{2}|^{2} \left(48 - \frac{9}{(18|c_{0}||c_{2}|)^{2}} \right) \right\} +$$

$$+ |c_{2}| \left(\frac{1}{12|c_{0}||c_{2}|} - \frac{|c_{2}|}{18|c_{0}|} \right) = 0,$$

$$|c_{0}| \left(\frac{1}{36|c_{0}||c_{2}|} + \frac{|c_{2}|}{18|c_{0}|} \right) + |c_{2}| \left\{ -\sigma +$$

$$+ \frac{343}{2} - \frac{9}{(18|c_{0}||c_{2}|)^{2}} + |c_{2}|^{2} \left(-48 + \frac{9}{(18|c_{0}||c_{2}|)^{2}} \right) \right\} = 0,$$

$$|c_{0}|^{2} + |c_{2}|^{2} = 1,$$

которая сводится к решению следующих уравнений

$$\sigma + 48 \mid c_2 \mid^2 = \frac{1}{18} + \frac{343}{2}, \quad \sigma - 48 \mid c_2 \mid^2 = \frac{1}{18} + \frac{247}{2}.$$
 (89)

Из (89) находим, что

$$\sigma_5^{(2)} = 147 + \frac{5}{9},\tag{90}$$

$$|c_0| = |c_2| = \frac{1}{\sqrt{2}},$$

и, следовательно,

$$\cos\left(\varphi_2-\varphi_0\right)=\frac{1}{9}.$$

Таким образом, соответствующие (90) коэффициенты разложения (53) имеют вид

$$c_{0,5}^{(2)} = \frac{1 \pm 4\sqrt{5}i}{9\sqrt{2}}, \quad c_{1,5}^{(2)} = 0, \quad c_{2,5}^{(2)} = \frac{1}{\sqrt{2}}.$$
 (91)

Остальные случаи рассматриваются аналогично. Во втором случае находим число

$$\sigma_4^{(2)} = 145 - \frac{1}{81} \tag{92}$$

и коэффициенты

$$c_{0,4}^{(2)} = \pm \frac{\sqrt{22}i}{9}, \quad c_{1,4}^{(2)} = \frac{\sqrt{59}}{9}, \quad c_{2,4}^{(2)} = 0.$$
 (93)

В третьем случае находим число (92) и коэффициенты

$$c_{0,4}^{(2)} = 0, \quad c_{1,4}^{(2)} = \frac{\sqrt{59}}{9}, \quad c_{2,4}^{(2)} = \pm \frac{\sqrt{22}i}{9}.$$
 (94)

В четвертом случае находим число

$$\sigma_3^{(2)} = 145 - \frac{1}{33} \tag{95}$$

и коэффициенты

$$c_{0,3}^{(2)} = \frac{\pm\sqrt{5} + \sqrt{24}i}{\sqrt{66}}, \quad c_{1,3}^{(2)} = \frac{\sqrt{8}}{\sqrt{66}}, \quad c_{2,3}^{(2)} = \frac{\pm\sqrt{5} - \sqrt{24}i}{\sqrt{66}}; \tag{96}$$

$$c_{0,3}^{(2)} = \frac{\pm\sqrt{5} - \sqrt{24}i}{\sqrt{66}}, \quad c_{1,3}^{(2)} = \frac{\sqrt{8}}{\sqrt{66}}, \quad c_{2,3}^{(2)} = \frac{\pm\sqrt{5} + \sqrt{24}i}{\sqrt{66}}.$$
 (97)

Наконец, в пятом случае находим два числа (90), (95), а также коэффициенты

$$c_{0,5}^{(2)} = \pm \frac{\sqrt{5}i}{3\sqrt{2}}, \quad c_{1,5}^{(2)} = \frac{2}{3}, \quad c_{2,5}^{(2)} = \pm \frac{\sqrt{5}i}{3\sqrt{2}}.$$
 (98)

И

$$c_{0,3}^{(2)} = \frac{\pm\sqrt{5} + \sqrt{24}i}{\sqrt{66}}, \quad c_{1,3}^{(2)} = \frac{\sqrt{8}}{\sqrt{66}}, \quad c_{2,3}^{(2)} = \frac{\pm\sqrt{5} - \sqrt{24}i}{\sqrt{66}}; \tag{99}$$

$$c_{0,3}^{(2)} = \frac{\pm\sqrt{5} - \sqrt{24}i}{\sqrt{66}}, \quad c_{1,3}^{(2)} = \frac{\sqrt{8}}{\sqrt{66}}, \quad c_{2,3}^{(2)} = \frac{\pm\sqrt{5} + \sqrt{24}i}{\sqrt{66}}.$$
 (100)

Справедлива

Теорема 5. При p=2 собственные значения задачи (31), (32), отвечающие комплексным собственным функциям, имеют вид (4), (95), (92), (90). Соответствующие собственные функции определяются равенствами (53), (99), (100), (96), (97); (93), (94); (91), (98).

Таким образом, в данной работе найдены асимптотические собственные значения и асимптотические собственные функции для оператора Хартри вблизи верхних границ спектральных кластеров. Отметим, что использованные в работе методы носят общий характер. Они применимы не только в случае оператора Хартри, но и при изучении более сложных нелинейных уравнений с сингулярными ядрами.

Дополнение

Данное дополнение содержит доказательство теоремы 1, относящейся к теории специальных функций. Начнем с асимптотики полинома Лежандра. Поскольку полином Эрмита имеет вид [23]

$$H_k(\tau) = \sum_{j=0}^{\lfloor k/2 \rfloor} \frac{(-1)^j k!}{j!(k-2j)!} (2\tau)^{k-2j},$$

где $[\alpha]$ — целая часть числа α , то заменяя в равенстве

$$\frac{d^{2\ell-k}}{dx^{2\ell-k}}(1-x^2)^{\ell} = (-1)^{\ell} \sum_{j=0}^{[k/2]} \frac{(-1)^{j}\ell!(2\ell-2j)!}{(\ell-j)!j!(k-2j)!} x^{k-2j}$$

факториалы по формуле Стирлинга, а также разлагая функцию $(1-x^2)^{(\ell-k)/2}$ с помощью формулы Тейлора, имеем:

$$P_{\ell}^{\ell-k}(\cos\theta) = \frac{(-1)^{k}\ell^{\ell-k/2}2^{\ell-k+1/2}e^{-\ell}}{k!}e^{-\tau^{2}/2}\left\{H_{k}(\tau) + O\left(\frac{\tau^{4}+1}{\ell}H_{k}(\tau)\right) + O\left(\frac{|\tau|^{3}+1}{\ell}H_{k}'(\tau)\right)\right\}.$$

Здесь $\tau^4 \ll \ell$.

Чтобы найти асимптотику полинома Лагерра, воспользуемся интегральными представлениями [23]:

$$L_n^s(x) = \frac{n!}{2\pi i} \oint_{|\omega| = \rho} \frac{e^{-x\omega/(1-\omega)}}{(1-\omega)^{s+1}\omega^{n+1}} d\omega,$$

$$H_n(x) = \frac{n!}{2\pi i} \oint_{|z| = R} e^{2xz - z^2} dz.$$
(101)

Здесь $\rho < 1$, контуры интегрирования ориентированы против часовой стрелки. Делая в интеграле (101) замену $\omega = z/\sqrt{\ell}$ и разлагая далее функции по формуле Тейлора, имеем:

$$L_{n_r}^{2\ell+1}\left(\frac{r}{\varepsilon n}\right) = \frac{n_r!}{2\pi i} \oint_{|\omega|=\rho} \frac{e^{-[2(\ell-n_r-1)+2\sqrt{\ell}s+O(s/\sqrt{\ell})+O(1/\ell)]\omega/(1-\omega)}}{(1-\omega)^{2\ell+2}\omega^{n_r+1}} d\omega =$$

$$= \frac{\ell^{n_r/2}n_r!}{2\pi i} \oint_{|z|=\sqrt{\ell}\rho} \frac{e^{-2sz-z^2}}{z^{n_r+1}} \left[1 + O\left(\frac{(2n_r+4)z - 2sz^2 - 4z^3/3}{\sqrt{\ell}}\right)\right] dz =$$

$$= \ell^{n_r/2}(-1)^{n_r} \left[H_{n_r}(s) + O\left(\frac{|s|^3 + 1}{\sqrt{\ell}}H_{n_r}(s)\right) + O\left(\frac{s^2 + 1}{\sqrt{\ell}}H'_{n_r}(s)\right)\right].$$

Здесь $s^6 \ll \ell$.

Чтобы получить формулу (16), остается разложить функцию $r^{\ell}e^{-r/(2\varepsilon n)}$ вблизи точки r=a и применить к входящим в (13), (14) факториалам формулу Стирлинга. Теорема доказана.

Автор благодарен М.В.Карасеву за привлечение внимания к данной задаче, а также за ценные вопросы и замечания.

Работа выполнена при поддержке РФФИ (проект 12-01-00627) и при частичной финансовой поддержке Совета по грантам при Президенте РФ (проект НШ-2081.2014.1).

Список литературы

- [1] Боголюбов Н. Н. Об одной новой форме адиабатической теории возмущений в задаче о взаимодействии частицы с квантовым полем // УМЖ, 1950, 2 (2), 3–24.
- [2] Пекар С. И. Исследования по электронной теории кристаллов // Гостехиздат, М., 1951, 258 стр.
- [3] Питаевский Л. П. Конденсация Бозе-Эйнштейна в магнитных ловушках. Введение в теорию // УФН, 1998, **168** (6), 641–653.
- [4] Хартри Д. Р. Расчеты атомных структур // ИЛ, М., 1960, 271 стр.
- [5] Achmanov S. A., Hocklov R. V., Suchorukov A. P. Self-fokusing, self-defokusing and self-modulation in nonlinear medium // Laserhandbuch, Holland-press, 1972, 2, 5—108.
- [6] Шифф Л. Квантовая механика // ИЛ, М., 1957, 473 стр.
- [7] Lieb E. H., Simon B. The Hartree-Fock theory for Coulomb systems // Commun. Math. Phys., 1977, 53 (3), 185–194.
- [8] Lions P. L. Solutions of Hartree-Fock equations for Coulomb systems // Commun. Math. Phys., 1987, 109 (1), 33–97.
- [9] Карасев М. В., Осипов Ю. В. Собственные функции уравнения Хартри-Фока, не обладающие сферической симметрией // ТМФ, 1982, **52** (2), 263–269.
- [10] Лахно В. Д. (ред.) Возбужденные поляронные состояния в конденсированных средах // ОНТИ НЦБИ АН СССР, Пущино, 1990, 144 стр.
- [11] Давыдов А. С. Солитоны в молекулярных системах // Наукова думка, Киев, 1984, 288 стр.
- [12] Бейтмен Г., Эрдейи А. Высшие трансцендентные функции // Наука, М., Т. 3, 1967, 300 стр.
- [13] Маслов В. П. Комплексный метод ВКБ в нелинейных уравнениях // Наука, М., 1977, 384 стр.
- [14] Карасев М. В. Квантовая редукция на орбиты алгебр симметрий и задача Эренфеста // Препринт ИТФ-87-157Р, ИТФ АН УССР, Киев, 1987, 38 стр.
- [15] Вакуленко С. А., Маслов В. П., Молотков И. А., Шафаревич И. А. Асимптотические решения уравнения Хартри, сосредоточенные при $\hbar \to 0$ в малой окрестности кривой // Доклады РАН, 1995, **345** (6), 743–745.
- [16] Карасев М. В., Перескоков А. В. Асимптотические решения уравнений Хартри, сосредоточенные вблизи маломерных подмногообразий. І. Модель с логарифмической особенностью // Изв. РАН, Сер. матем., 2001, **65** (5), 33–72.
- [17] Карасев М. В., Перескоков А. В. Асимптотические решения уравнений Хартри, сосредоточенные вблизи маломерных подмногообразий. П. Локализация в плоских дисках // Изв. РАН, Сер. матем., 2001, 65 (6), 57–98.

[18] Перескоков А. В. Асимптотические решения двумерных уравнений Хартри, ло-кализованные вблизи отрезков // ТМФ, 2002, **131** (3), 389–406.

- [19] Белов В. В., Литвинец Ф. Н., Трифонов А. Ю. Квазиклассические спектральные серии оператора типа Хартри, отвечающие точке покоя классической системы Гамильтона-Эренфеста // $TM\Phi$, 2007, **150** (1), 26–40.
- [20] Перескоков А. В. Квазиклассическая асимптотика спектра оператора типа Хартри вблизи верхних границ спектральных кластеров // ТМФ, 2014, **178** (1), 88–106
- [21] Перескоков А. В. Квазиклассическая асимптотика спектра вблизи верхних границ спектральных кластеров для оператора типа Хартри // НМФМ, 2014, $\bf 10$ (1), 77–112.
- [22] Karasev M. V. Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. I. // In book: Karasev M. (ed), Quantum Algebras and Poisson Geometry in Mathematical Physics, Amer. Math. Soc. Trans. Ser. 2, Providence, RI, 2005, **216**, 1–18; II. // Adv. Stud. Contemp. Math., 2005, **11** (1), 33–56; III. // Russ. J. Math. Phis., 2006, **13** (2), 131–150.
- [23] Бейтмен Г., Эрдейи А. Высшие трансцендентные функции // Наука, М., Т. 2, 1974, 296 стр.
- [24] Сеге Г. Ортогональные многочлены // Физматлит, М., 1962, 500 стр.
- [25] Прудников А. П., Брычков Ю. А., Маричев О. И. Интегралы и ряды. Элементарные функции // Наука, М., 1981, 800 стр.

SEMICLASSICAL ASYMPTOTICS OF THE HARTREE OPERATOR SPECTRUM NEAR THE UPPER BOUNDARIES OF SPECTRUM CLUSTERS. ASYMPTOTIC SOLUTIONS CONCENTRATED NEAR CIRCLE

A.V. Pereskokov

NRU "Moscow Power Engineering Institute", MIEM NRU "Higher School of Economics"

pereskokov62@mail.ru

Received 05.08.2014

The eigenvalue problem for the Hartree operator with Coulomb interaction and with a small parameter at the non-linearity is considered. The asymptotic eigenvalues and eigenfunctions near the upper boundaries of the spectral clusters are calculated. The leading term of expansion is a solution of the two-dimensional oscillator problem near the circle, where the solution is concentrated.